
Wave-kinetic approach to zonal-flow dynamics:
Recent advances

Cite as: Phys. Plasmas 28, 032303 (2021); doi: 10.1063/5.0043784
Submitted: 11 January 2021 . Accepted: 17 February 2021 .
Published Online: 16 March 2021

Hongxuan Zhu1,a),b) and I. Y. Dodin1,2

AFFILIATIONS
1Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA
2Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08544, USA

Note: This paper is part of the Special Collection: Papers from the 62nd Annual Meeting of the APS Division of Plasma Physics.
Note: Paper BI2 6, Bull. Am. Phys. Soc. 65 (2020).
a)Invited speaker.
b)Author to whom correspondence should be addressed: hzhu@pppl.gov

ABSTRACT

The basic physics of drift-wave turbulence and zonal flows has long been studied within the framework of the wave-kinetic theory. Recently,
this framework has been reexamined from first principles, which has led to more accurate yet still tractable “improved” wave-kinetic equa-
tions. In particular, these equations reveal an important effect of the zonal-flow “curvature” (the second radial derivative of the flow velocity)
on the dynamics and stability of drift waves and zonal flows. We overview these recent findings and present a consolidated high-level picture
of (mostly quasilinear) zonal-flow physics within reduced models of drift-wave turbulence.
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I. INTRODUCTION

It is well known that sheared E � B flows, including equilibrium
flows and spontaneously generated zonal flows (ZFs), can reduce the
level of drift-wave (DW) turbulence in fusion plasmas and play a
crucial role in the transition between regimes with low and high
(L–H) confinement (for reviews, see, e.g., Refs. 1–4). Numerical
simulations have also shown that ZFs can even completely suppress
turbulence near the instability threshold, which effect is known as
the Dimits shift.5–11 Because of this, DW–ZF interactions have been
attracting much attention over the last decades and studied
extensively.

One of the theoretical frameworks used for studying DW–ZF
interactions is the wave-kinetic theory of inhomogeneous DW turbu-
lence.1,12–24 Within this framework, which assumes ZFs to have scales
much larger than the characteristic DW wavelength, DWs are
described as effective classical particles, sometimes called “driftons.”16

The drifton phase-space density is described by the wave-kinetic equa-
tion (WKE). The ZF velocity enters the WKE through the drifton
Hamiltonian and serves as a collective field through which driftons
interact. This approach has been fairly successful; for example, it has
yielded predator–prey models that explain some aspects of the L–H
transition.12,25,26 However, because the “traditional” WKE relies on ad
hoc assumptions and is not entirely rigorous, the potential of the

wave-kinetic approach in application to DW turbulence is yet to be
fully appreciated.

Recently, the wave-kinetic description of inhomogeneous DW
turbulence has been reexamined from first principles and applied
to make quantitative predictions in a number of problems.27–38

Although still limited to simplified DW models, those results indi-
cate that important qualitative physics has been overlooked in the
past but can be described transparently if the wave-kinetic formal-
ism is properly amended. In particular, the “improved” WKE
reveals an important effect of the ZF “curvature” (the second radial
derivative of the zonal velocity) on the dynamics and stability of
DWs and ZFs. Here, we overview these results and present a
consolidated high-level picture of DW–ZF interactions and ZF
stability. Our analysis is mostly based on the modified Hasegawa–
Mima model39–41 and on the quasilinear approximation (which
neglects DW–DW interactions but keeps DW–ZF coupling),
although more general models are also considered. A special focus
is made on understanding drifton phase-space dynamics, associated
solitary structures, merging and splitting of ZFs, as well as the
Kelvin–Helmholtz instability (KHI) and the tertiary instability.
Notably, while the KHI and the tertiary instability are often con-
fused with each other, they have very different properties, as dis-
cussed below. We also briefly mention the connection between
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